Exercise 16C: Solutions
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we draw a right angled triangle with opposite and adjacent lengths 3 and 1 respectively. Pythagoras’ Theorem
gives the hypotenuse as 4/10. Therefore,
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We then use the double angle formulas to show that
cos20 =2cos’H — 1
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Therefore, the required matrix is
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we draw a right angled triangle with opposite and adjacent lengths 5 and 1 respectively. Pythagoras’ Theorem
gives the hypotenuse as 1/26. Therefore,

5
and sinf = ——

1
/26 V26
We then use the double angle formulas to show that
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Therefore, the required matrix is
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¢ Sincetan#f = 3
we draw a right angled triangle with opposite and adjacent lengths 2 and 3 respectively. Pythagoras’ Thearem
gives the hypotenuse as 4/13. Therefore,
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We then use the double angle formulas to show that
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Therefore, the required matrix is
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we draw a right angled triangle with opposite and adjacent lengths 3 and 1 respectively. Pythagoras’ Thearem
gives the hypotenuse as 4/10. Therefore, since —90° < 8 < 0°,
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Therefore, the required matrix is
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we draw a right angled triangle with opposite and adjacent lengths m and 1 respectively. Pythagoras’ Theorem
gives the hypotenuse as v/m? + 1. Therefore,
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We then use the double angle formulas to show that
cos20 =2cos’H — 1
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Therefore the required matrix is
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The gradient of the line is m = 6. Substituting this into the matrix found above, the reflection matrix is
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Therefore the image of (1, 1) can be found by evaluating,
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To find the image of the unit square we evaluate
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The columns then give the required points:



The square is shown in blue, and its image in red.

c To find the overlapping region, we subtract the area of the small upper isosceles triangle from the right half of
the red square. The base and height of the small isosceles triangle is /2 — 1 so that the overlapping area is
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7 a Thereis no real need to use the rotation matrix for this question. Let O be the origin. We know that length
OA = 1. Therefore, lengths OB = 1 and OC = 1. Therefore,
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b Triangle ABC is clearly equilateral.

¢ lIts lines of symmetry will be
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y=20
y = xtan300° = —/3z



